Infinite horizon differential games for abstract evolution equations
نویسنده
چکیده
Berkovitz’s notion of strategy and payoff for differential games is extended to study two player zero-sum infinite dimensional differential games on the infinite horizon with discounted payoff. After proving dynamic programming inequalities in this framework, we establish the existence and characterization of value. We also construct a saddle point for the game. Mathematical subject classification: 91A23, 49N70, 49L20, 49L25.
منابع مشابه
Pathwise Stationary Solutions of Stochastic Partial Differential Equations and Backward Doubly Stochastic Differential Equations on Infinite Horizon
The main purpose of this paper is to study the existence of stationary solution for stochastic partial differential equations. We establish a new connection between backward doubly stochastic differential equations on infinite time horizon and the stationary solution of the SPDEs. For this we study the existence of the solution of the associated BDSDEs on infinite time horizon and prove it is a...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملExistence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملStationary Solutions of SPDEs and Infinite Horizon BDSDEs with Non-Lipschitz Coefficients
We prove a general theorem that the L2ρ(R ;R) ⊗ L2ρ(R ;R) valued solution of an infinite horizon backward doubly stochastic differential equation, if exists, gives the stationary solution of the corresponding stochastic partial differential equation. We prove the existence and uniqueness of the L2ρ(R ;R)⊗Lρ(R ;R) valued solutions for backward doubly stochastic differential equations on finite a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004